3.427 \(\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=264 \[ \frac {\left (a^2 (-B)+4 a A b-8 b^2 B\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{4 b^{3/2} d}+\frac {\sqrt {-b+i a} (-B+i A) \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {\sqrt {b+i a} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d} \]

[Out]

1/4*(4*A*a*b-B*a^2-8*B*b^2)*arctanh(b^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/b^(3/2)/d+(I*A-B)*arctan(
(I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2)/d+(I*A+B)*arctanh((I*a+b)^(1/2)*tan(d*x+c
)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)/d+1/4*(4*A*b-B*a)*tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/b/d+1/
2*B*tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(3/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 1.91, antiderivative size = 264, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3607, 3647, 3655, 6725, 63, 217, 206, 93, 205, 208} \[ \frac {\left (a^2 (-B)+4 a A b-8 b^2 B\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{4 b^{3/2} d}+\frac {\sqrt {-b+i a} (-B+i A) \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {\sqrt {b+i a} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[I*a - b]*(I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + ((4*a*A*b -
a^2*B - 8*b^2*B)*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(4*b^(3/2)*d) + (Sqrt[I*a + b
]*(I*A + B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + ((4*A*b - a*B)*Sqrt[Tan[
c + d*x]]*Sqrt[a + b*Tan[c + d*x]])/(4*b*d) + (B*Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x])^(3/2))/(2*b*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3655

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n*(A + B*ff*x + C*ff^2*x^2))/(1 + ff^2*x^2), x], x, Tan[
e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}+\frac {\int \frac {\sqrt {a+b \tan (c+d x)} \left (-\frac {a B}{2}-2 b B \tan (c+d x)+\frac {1}{2} (4 A b-a B) \tan ^2(c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{2 b}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}+\frac {\int \frac {-\frac {1}{4} a (4 A b+a B)-2 b (A b+a B) \tan (c+d x)+\frac {1}{4} \left (4 a A b-a^2 B-8 b^2 B\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 b}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}+\frac {\operatorname {Subst}\left (\int \frac {-\frac {1}{4} a (4 A b+a B)-2 b (A b+a B) x+\frac {1}{4} \left (4 a A b-a^2 B-8 b^2 B\right ) x^2}{\sqrt {x} \sqrt {a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{2 b d}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}+\frac {\operatorname {Subst}\left (\int \left (\frac {4 a A b-a^2 B-8 b^2 B}{4 \sqrt {x} \sqrt {a+b x}}-\frac {2 (b (a A-b B)+b (A b+a B) x)}{\sqrt {x} \sqrt {a+b x} \left (1+x^2\right )}\right ) \, dx,x,\tan (c+d x)\right )}{2 b d}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}-\frac {\operatorname {Subst}\left (\int \frac {b (a A-b B)+b (A b+a B) x}{\sqrt {x} \sqrt {a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{b d}+\frac {\left (4 a A b-a^2 B-8 b^2 B\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{8 b d}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}-\frac {\operatorname {Subst}\left (\int \left (\frac {-b (A b+a B)+i b (a A-b B)}{2 (i-x) \sqrt {x} \sqrt {a+b x}}+\frac {b (A b+a B)+i b (a A-b B)}{2 \sqrt {x} (i+x) \sqrt {a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{b d}+\frac {\left (4 a A b-a^2 B-8 b^2 B\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{4 b d}\\ &=\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}-\frac {((i a+b) (A-i B)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {((i a-b) (A+i B)) \operatorname {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\left (4 a A b-a^2 B-8 b^2 B\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{4 b d}\\ &=\frac {\left (4 a A b-a^2 B-8 b^2 B\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{4 b^{3/2} d}+\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}-\frac {((i a+b) (A-i B)) \operatorname {Subst}\left (\int \frac {1}{i-(-a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {((i a-b) (A+i B)) \operatorname {Subst}\left (\int \frac {1}{i-(a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {i a-b} (i A-B) \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\left (4 a A b-a^2 B-8 b^2 B\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{4 b^{3/2} d}+\frac {\sqrt {i a+b} (i A+B) \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {(4 A b-a B) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{4 b d}+\frac {B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.46, size = 304, normalized size = 1.15 \[ \frac {-\sqrt {a} \left (a^2 B-4 a A b+8 b^2 B\right ) \sqrt {\frac {b \tan (c+d x)}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )+\sqrt {b} \left (-4 \sqrt [4]{-1} b \sqrt {-a+i b} (B+i A) \sqrt {a+b \tan (c+d x)} \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+4 (-1)^{3/4} b \sqrt {a+i b} (A+i B) \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {a+b \tan (c+d x)}+\sqrt {\tan (c+d x)} (a+b \tan (c+d x)) (a B+4 A b+2 b B \tan (c+d x))\right )}{4 b^{3/2} d \sqrt {a+b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-(Sqrt[a]*(-4*a*A*b + a^2*B + 8*b^2*B)*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x]
)/a]) + Sqrt[b]*(-4*(-1)^(1/4)*Sqrt[-a + I*b]*b*(I*A + B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]]
)/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a + b*Tan[c + d*x]] + 4*(-1)^(3/4)*Sqrt[a + I*b]*b*(A + I*B)*ArcTan[((-1)^(1/
4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a + b*Tan[c + d*x]] + Sqrt[Tan[c + d*x]]*(
a + b*Tan[c + d*x])*(4*A*b + a*B + 2*b*B*Tan[c + d*x])))/(4*b^(3/2)*d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 1.03, size = 2181075, normalized size = 8261.65 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(1/2)*tan(d*x+c)**(3/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*tan(c + d*x)**(3/2), x)

________________________________________________________________________________________